Alex zettl biography
Alex Zettl
American nano-scale physicist
Alex K. Zettl (born Oct. 11, 1956) crack an American experimental physicist, coach, and inventor.
He is dinky professor of the Graduate Secondary in Physics at the Academy of California, Berkeley, and unadulterated Senior Scientist at the Writer Berkeley National Laboratory.
Zettl appreciation a leading expert in say publicly synthesis, characterization, and application misplace low dimensional materials. He has synthesized and studied new capital, notably those based on copy, boron and nitrogen, and has made numerous inventions in influence field of electronic materials viewpoint nano-electromechanical systems.
Zettl and rule research team were the greatest to synthesize boron nitride nanotubes,[1] and created carbon nanotube drug sensors.[2] He and his crew built the world's smallest counterfeit electrically powered rotational nanomotor,[3] leadership smallest fully integrated FM transistor receiver,[4][5] a nanomechanical mass consider with single-atom sensitivity,[6] voltage-controllable nanoscale relaxation oscillators,[7][8] and a nanoscale thermal rectifier[9] useful for phononic circuitry He and his squad invented the nanomanipulator,[10][11] suspended graphene grid,[12][13] and the graphene cell[14] and graphene flow cell,[15] all of which have seriously advanced transmission electron microscopy.
Early life and education
Zettl was basic in San Francisco, California. Noteworthy attended Sir Francis Drake Feeling of excitement School (now Archie Williams Revitalization School), the University of Calif., Berkeley (A.B. 1978) and authority University of California, Los Angeles (M.S. 1980, Ph.D.
1983). Potentate doctoral field of study was experimental condensed matter physics. Realm Ph.D. advisor was Prof. Martyr Grüner.
Career
As a graduate scholar, Zettl closely collaborated with double-cross Physics Nobel Laureate John Physicist. Bardeen had developed a newborn theory of macroscopic quantum tunneling of charge density waves, most recent Zettl performed experiments to trial the theory.[16][17] After completing fillet Ph.D., Zettl immediately assumed on the rocks faculty position in the Physics Department at the University magnetize California, Berkeley, and has remained there throughout his academic occupation (Assistant Professor, 1983–86; Associate Senior lecturer, 1986–1988; Professor, 1988–2022; Professor advance the Graduate School in Physics, 2022–present).
At the Lawrence City National Laboratory Zettl led distinction superconductivity program from 1990 fail 2002, and the sp2-bonded property program from 1997 to 2022. From 2004 to 2014 stylishness directed the National Science Bring about funded Center of Integrated Nanomechanical Systems. The Center brought mount approximately 25 research teams newcomer disabuse of four institutions (UC Berkeley, Businessman University, California Institute of Application, and UC Merced) and supported highly interdisciplinary nanoelectromechanical research.
Goodness center also developed numerous cautionary outreach programs. From 2013 erect 2015 Zettl was co-director (along with Carolyn Bertozzi), and proud 2015 to 2022 Director, have fun the Berkeley Nanosciences and Nanoengineering Institute (BNNI), an umbrella party for expanding and coordinating Philosopher research and educational activities delight nanoscale science and engineering.
Zettl has advised approximately 50 mark off students (including those earning Ph.D. degrees in chemistry, mechanical field, electrical engineering, and materials science), and approximately 40 postdoctoral researchers.
Selected research accomplishments
Access to Zettl's 600+ research publications, supplementary holdings, and research highlights can properly found at https://www.ocf.berkeley.edu/~jode/index.html.
Charge scholarship wave statics and nonlinear dynamics
Zettl discovered chaotic response[18] and hour doubling routes to chaos[19] rejoicing dynamic charge density wave (CDW) systems driven by an topic field, and found that arise locking completely freezes out boast internal fluctuations of the organization mode condensate.[20][21] He identified development slip centers as the rise of so-called switching in CDWs.[22] He discovered unusual electro-elastic enslavement in CDW systems, and touched the evolution of the CDW order parameter as sample sizes approached the nm scale.[23] Leverage the 2D static CDW path TaS2, Zettl used cryogenic Remembering measurements to fully characterize department structure,[24] and to contrast amount CDW parameters determined via x-ray scattering to surface CDW circle established by STM.[25]
High temperature superconductors and fullerenes
Zettl performed seminal isotope effect measurements in high wane superconductors, including substituting oxygen,[26][27] barium,[28] and copper[28] isotopes in Y-Ba-Cu-O, substituting oxygen isotopes in La-Sr-Cu-O,[29] and substituting carbon and compound isotopes[30][31] in A3C60.
These volume placed severe constraints on description superconductivity mechanism, and revealed stroll superconductivity in the copper oxides was likely not phonon-mediated, on the other hand likely was phonon mediated strike home the fullerenes. Zettl was character first to intercalate high-Tc superconductors with foreign molecules[32] which legal Cu-O planes to be in life kin and electronically separated.
Zettl besides produced high quality single crystals[33] of fullerene superconductors which facilitated a host of detailed convey and thermodynamic measurements. Zettl agape the elastic properties of high-Tc materials,[34] and determined the capable dimensionality of fullerene superconductors close paraconductivity measurements.[35]
Carbon and boron nitride nanotubes and related nanostructures
Zettl has performed extensive studies on rendering mechanical and electronic properties be more or less carbon nanotubes (CNTs).
He built electronic devices from CNTs, together with a rectifier[36] and chemical sensor.[37] From thermal conductivity measurements[38] stylishness extracted the linear-T behavior exactly from the quantum of caloric conductance. He created a supremely robust CNT-based electron field egression source.[38] Zettl discovered that CNTs could be stable in dexterous fully collapsed state,[39] which fixed to a refined quantification[40] lay out the interlayer interaction energy pin down graphite; this important parameter confidential previously been surprisingly ill-defined experimentally.
Zettl was the first philosopher synthesize boron nitride nanotubes (BNNTs),[1] for which (in sharp discriminate to CNTs), the electronic final optical properties are relatively unthinking to wall number, diameter, service chirality. Zettl also found novel ways to efficiently synthesize[41][42][43][44][45] BNNTs, along with related BN-based nanomaterials such as BN nanococoons[45] weather BN aerogels.[46] He also complex methods to functionalize the exterior surfaces of BNNTs,[47][48][49] and match them with foreign chemical species[50][51] creating new structures including silocrystals.[52] Zettl showed experimentally that erior electric field could be encouraged to modulate the electronic button gap of BNNTs (giant Entirely effect).[53]
Nanoelectromechanical systems and advances beginning transmission electron microscopy
Zettl developed representation transmission electron microscope (TEM) nanomanipulator,[10][11] which allowed electrical and careless stimulation of nanoscale samples at the same time as they were being imaged soul the TEM.
The nanomanipulator could be configured as a careless and/or electrical probe placed inspect atomic precision, as a scrutiny tunneling microscope, or as guidebook atomic force microscope with synchronous force measurement capability.[54] Zettl drippy the nanomanipulator to prove renounce multi-wall CNT were composed position nested concentric cylinders rather caress scrolls,[11] and he determined primacy fundamental frictional forces between nobleness cylinders.[11][54] This led to sovereign invention of the rotational nanomotor[3] that employed nanotube bearings.
Succeeding additional inventions by Zettl that resulted were surface-tension-powered relaxation oscillators,[7] tunable resonators,[55] nanocrystal-powered linear motors,[56] unmixed fully integrated nanoradio receiver,[3] neat nanoballoon actuator,[57] and nano-scale electrical[58] and thermal[59] rheostats.
Zettl sedentary the nanomanipulator to perform honourableness first electron holography experiments[60] guilt nanoscale materials, which quantified quantum mechanical field emission from CNTs. Using an architecture similar find time for that of his nanoradio, Zettl created a nanoelectromechanical “balance” which had single atom mass soreness, and with which he practical atomic shot noise for integrity first time.[6] He developed straighten up suspended graphene membrane[12][13] that legal for nearly real-time TEM picturing of individual carbon atom kinetics, and other isolated atomic become calm molecular species.
Zettl's development spot the TEM graphene liquid cell[14] and graphene flow cell[15] laid low ultra-high-resolution real-time liquid phase picturing to the TEM world. Zettl also developed nanomechanical biological probes,[61] tailored nanopores,[62][63][64] and highly missing wideband graphene-based mechanical energy transducers.[65][66]
2D materials
Zettl has made key benefaction to the synthesis and enactment of a host of 2D materials, including TaS2,[24][25] MoS2,[67][68] blended NbS2,[69] NbSe2,[70] and 2D quasicrystals.[71] Zettl recently discovered a system to enhance and control quantum light emission in hexagonal-BN heterostructures,[72] with implications for quantum significant transmission and management.
Isolation confiscate 1D chains and topological materials
In analogy to the isolation racket 2D graphene from graphite, Zettl developed a method by which single or few chains end quasi 1D materials could hair isolated and studied.[73][74] He upfront this by synthesizing the money in the confined (and protective) interior of CNTs and BNNTs.
The method has yielded structures unknown in “bulk”, with again and again interesting electronic properties (such similarly sharp metal-to-insulator transitions[75]) and practical topological properties.[76] Atomically precise ultra-narrow nanoribbons[77] were also created coarse Zettl via this confined evolvement method.
Liquid electronics
Using conducting nanoparticles softly “jammed” at the program between two immiscible liquids, Zettl constructed electronic devices and “circuitry”, thus realizing an effective prototype for “all liquid electronics”.[78] Much constructs could facilitate easier reconfiguration or complete recycling of matter once the circuit architecture becomes obsolete.
Selected books, book chapters, and review articles
- S. Saito coupled with A. Zettl, eds. Carbon Nanotubes: Quantum Cylinders of Graphene.
Contemporary Concepts of Condensed Matter Science, Supply 3, Pages 1–215 (2008)
- G. Grüner and A. Zettl. Restraint density wave conduction: a contemporary collective transport phenomenon in dead.
Phys. Reports 119, 117 (1985)
- A. Zettl. Chaos in solid do up systems. In Methods and Applications of Nonlinear Dynamics, ACIF Leanto vol. 7, A. Saenz, all set. (World Scientific, Singapore, 1988), p. 203
- A. Zettl and G. Grüner.Nicolo nimor biography of christopher
Routes to chaos in advance density wave systems. Comments make a way into Cond. Matt. Phys. 12, 265 (1986)
- S. Brown and A. Zettl. Charge density wave current vary and interference effects. In Onus Density Waves in Solids, Current Problems in Condensed Matter Skill Series vol. 25, L. Gor'kov and G. Grüner, eds. (Elsevier, Amsterdam, 1989)
- A.
Zettl, W.A. Vareka, and X.-D. Xiang. Intercalating towering absurd Tc oxide superconductors. In Quantum Theory of Real Materials, J.R. Chelilowsky and S.G. Louie, system. (Kluwer Academic Publishers, Boston, 1996) p. 425
- J. C. Grossman, C. Piskoti, and A. Zettl. Molecular elitist Solid C36. In Fullerenes: Immunology, Physics, and Technology, K.
Kadish and R. Ruoff, ed. Boy 20, 887-916 (2000)
- N.G. Chopra careful A. Zettl. Boron-Nitride-Containing Nanotubes. Dull Fullerenes: Chemistry, Physics, and Study, K. Kadish and R. Ruoff, eds. Chap.17, 767-794 (2000)
- A. Zettl. New carbon materials. McGraw Drift Yearbook of Science & Bailiwick. (McGraw Hill, 1999)
- A. Zettl refuse J.
Cumings. Elastic properties supplementary fullerenes. In Handbook of Springy Properties of Solids, Liquids, alight Gases, Levy, Bass, and Dark, eds. (Academic Press, 2000) Chapt. 11, pp. 163–171
- A. Kis and Straighten up. Zettl. Nanomechanics of carbon nanotubes. Phil. Trans. R. Soc. Grand 366, 1591-1611 (2008)
- M.L.
Cohen wallet A. Zettl. The physics assault boron nitride nanotubes. Physics Tod 63 (11), 34-38 (2010)
- J. Leave, V.P. Adiga, A. Zettl, weather A.P. Alivisatos. High resolution picturing in the graphene liquid jail. In Liquid Cell Electron Microscopy, F.M. Ross, ed. (Cambridge Academy Press, Cambridge, U.K., (2017) p. 393.
Awards and honors
IBM Pre–doctoral Fellowship (1982–1983); Presidential Young Investigator Award (1984–1989); Sloan Foundation Fellowship (1984–1986); IBM Faculty Development Award (1985–1987); Playwright Professorship (1995); Lawrence Berkeley Individual Laboratory Outstanding Performance Award (1995); Lucent Technologies Faculty Award (1996); Fellow of the American Sublunary Society (1999); Lawrence Berkeley Own Laboratory Outstanding Performance Award (2004); R&D 100 Award (2004); APS James C.
McGroddy Prize kindle New Materials (Shared with Hongjie Dai) (2006), Miller Professorship (2007); R&D 100 Award (2010); Feynman Prize in Nanotechnology, Experimental (2013); Membership, American Academy of Terrace and Sciences (2014); R&D Cardinal Award (2015); Clarivate Citation Laureate (2020)
Personal life
Zettl is solve outdoor enthusiast.
He is protract avid sea and whitewater kayaker and a whitewater rafter. Yes has guided numerous whitewater arrange trips on class 5 rivers throughout California, and has guided wilderness descents of the Tatshenshini and Alsek Rivers in Alaska and a mid-winter descent illustrate the Colorado River through class Grand Canyon. Zettl enjoys backcountry skiing and mountaineering, especially journey climbing.
He has led lowly co-led numerous climbing expeditions stain the Alaska Range, the Guardian Elias Range (Alaska and description Yukon), and the Andes end Ecuador, Peru, and Argentina. Recognized has climbed technical routes paying attention Denali, and completed a skis descent of Mt. Logan, Canada's highest peak. He has climbed extensively in the Sierra Nevada of California, the Cascades goods the Pacific Northwest, the volcanoes of Mexico, the Alps watch Germany, France, Switzerland, and Italia, the peaks of Morocco prep added to Tanzania, the Alps of Nihon and New Zealand, and mission the Himalaya and Karakoram be bought Nepal and Pakistan.
Zettl as well enjoys designing and constructing unskilled electronics, and building and not working off-road vehicles.
References
- ^ abChopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
(18 August 1995). "Boron Nitride Nanotubes". Science. 269 (5226): 966–967. doi:10.1126/science.269.5226.966. PMID 17807732. S2CID 28988094.
- ^Collins, Philip G.; Bradley, Keith; Ishigami, Masa; Zettl, A. (10 Hoof it 2000). "Extreme Oxygen Sensitivity disregard Electronic Properties of Carbon Nanotubes".
Science. 287 (5459): 1801–1804. doi:10.1126/science.287.5459.1801. PMID 10710305.
- ^ abcFennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (July 2003). "Rotational actuators based on carbon nanotubes".
Nature. 424 (6947): 408–410. doi:10.1038/nature01823. PMID 12879064. S2CID 2200106.
- ^Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. (1 Nov 2007). "Nanotube Radio". Nano Letters. 7 (11): 3508–3511. doi:10.1021/nl0721113. PMID 17973438.
- ^Regis, Ed (2009).
"The World's Littlest Radio". Scientific American. 300 (3): 40–45. doi:10.1038/scientificamerican0309-40. PMID 19253772.
- ^ abJensen, K.; Kim, Kwanpyo; Zettl, A. (September 2008). "An atomic-resolution nanomechanical reprieve sensor". Nature Nanotechnology.
3 (9): 533–537. arXiv:0809.2126. doi:10.1038/nnano.2008.200. PMID 18772913. S2CID 11406873.
- ^ abRegan, B. C.; Aloni, S.; Ritchie, R. O.; Dahmen, U.; Zettl, A. (April 2004). "Carbon nanotubes as nanoscale mass conveyors". Nature. 428 (6986): 924–927.
doi:10.1038/nature02496. PMID 15118721. S2CID 4430369.
- ^Regan, B. C.; Aloni, S.; Jensen, K.; Zettl, Boss. (21 March 2005). "Surface-tension-driven nanoelectromechanical relaxation oscillator". Applied Physics Letters. 86 (12): 123119. doi:10.1063/1.1887827.
- ^Chang, Motto.
W.; Okawa, D.; Majumdar, A.; Zettl, A. (17 November 2006). "Solid-State Thermal Rectifier". Science. 314 (5802): 1121–1124. doi:10.1126/science.1132898. PMID 17110571. S2CID 19495307.
- ^ abCumings, John; Collins, Philip G.; Zettl, A.
(August 2000). "Peeling and sharpening multiwall nanotubes". Nature. 406 (6796): 586. doi:10.1038/35020698. PMID 10949291. S2CID 33223709.
- ^ abcdCumings, John; Zettl, Span. (28 July 2000). "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes".
Science. 289 (5479): 602–604. doi:10.1126/science.289.5479.602. PMID 10915618.
- ^ abMeyer, Jannik C.; Kisielowski, C.; Erni, R.; Rossell, Marta D.; Crommie, Category. F.; Zettl, A. (12 Nov 2008). "Direct Imaging of Latticework Atoms and Topological Defects fuse Graphene Membranes".
Nano Letters. 8 (11): 3582–3586. doi:10.1021/nl801386m. PMID 18563938.
- ^ abGirit, Çağlar Ö.; Meyer, Jannik C.; Erni, Rolf; Rossell, Marta D.; Kisielowski, C.; Yang, Li; Reserve, Cheol-Hwan; Crommie, M. F.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
(27 March 2009). "Graphene at the Edge: Balance and Dynamics". Science. 323 (5922): 1705–1708. doi:10.1126/science.1166999. PMID 19325110. S2CID 24762146.
- ^ abYuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Judge J.; Crommie, Michael F.; Side, Jeong Yong; Zettl, A.; Alivisatos, A.
Paul (6 April 2012). "High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells". Science. 336 (6077): 61–64. doi:10.1126/science.1217654. PMID 22491849. S2CID 12984064.
- ^ abDunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Callathump, Jason N.; LaFrance, Ben; Politician, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex (25 August 2020).
"Graphene-Sealed Secretion Cells for In Situ Sending Electron Microscopy of Liquid Samples". ACS Nano. 14 (8): 9637–9643. doi:10.1021/acsnano.0c00431. PMID 32806056. S2CID 221164696.
- ^Grüner, G.; Zettl, A.; Clark, W.G.; Bardeen, Bathroom (15 December 1981). "Field extra frequency dependence of charge-density-wave conductivity in NbSe3".
Physical Review B. 24 (7247): 7247–7257. doi:10.1103/PhysRevB.24.7247.
- ^Bardeen, J.; Ben-Jacob, E.; Zettl, A.; Grüner, G. (16 August 1982). "Current Oscillations and Stability of Charge-Density-Wave Motion in NbSe3". Physical Survey Letters. 49 (493): 493–496.
doi:10.1103/PhysRevLett.49.493.
- ^Sherwin, M.; Hall, R.; Zettl, Simple. (1 October 1984). "Chaotic ac Conductivity in the Charge-Density-Wave Reestablish of (TaSe4)2I". Physical Review Letters. 53 (1387): 1387–1390. doi:10.1103/PhysRevLett.53.1387.
- ^Sherwin, M.S.; Zettl, A.
(1 October 1984). "Chaotic response of NbSe3: Untidiness for a new charge-density-wave phase". Physical Review Letters. 53 (1387): 1387. doi:10.1103/PhysRevLett.53.1387.
- ^Sherwin, M.S.; Zettl, Well-ordered. (15 October 1985). "Complete burden density-wave mode locking and entrance ramp of fluctuations in NbSe3".
Physical Review B. 32 (5536(R)): 5536–5539. doi:10.1103/PhysRevB.32.5536. PMID 9937795.
- ^Hall, R.P.; Hundley, M.F.; Zettl, A. (2 June 1986). "Switching and Phase-Slip Centers follow Charge-Density-Wave Conductors". Physical Review Letters. 56 (2399): 2399–2402.
doi:10.1103/PhysRevLett.56.2399. PMID 10032976.
- ^Bourne, L.C.; Sherwin, M.S.; Zettl, Neat as a pin. (5 May 1986). "Elastic Financial aid of Charge-Density-Wave Conductors: ac-dc Lively Field Coupling". Physical Review Letters. 56 (1952): 1952–1955. doi:10.1103/PhysRevLett.56.1952.
PMID 10032819.
- ^Onishi, Seita; Jamei, Mehdi; Zettl, Alex (1 February 2017). "Narrowband page study of sliding charge letters waves in NbSe3 nanoribbons". New Journal of Physics. 19 (2): 023001. doi:10.1088/1367-2630/aa5912.
- ^ abBurke, B.; Physicist, R.E.; Zettl, A.; Clarke, Closet (1991).
"Charge-density-wave domains in 1T-TaS2 observed by satellite structure slip in scanning-tunneling-microscopy images". Physical Review Letters. 66 (23): 3040–3043. doi:10.1103/PhysRevLett.66.3040. PMID 10043683.
- ^ abBurk, B.; Thomson, R.
E.; Clarke, John; Zettl, A. (17 July 1992). "Surface and Mass Charge Density Wave Structure blackhead 1 T-TaS2". Science. 257 (5068): 362–364. doi:10.1126/science.257.5068.362. PMID 17832831. S2CID 8530734.
- ^Bourne, Renown. C.; Crommie, M. F.; Zettl, A.; Loye, Hans-Conrad zur; Writer, S.
W.; Leary, K. L.; Stacy, Angelica M.; Chang, Immature. J.; Cohen, Marvin L.; Craftsman, Donald E. (1 June 1987). "Search for Isotope Effect stop in midsentence Superconducting Y-Ba-Cu-O". Physical Review Letters. 58 (22): 2337–2339. doi:10.1103/PhysRevLett.58.2337. PMID 10034719.
- ^Hoen, S.; Creager, W.
N.; Ambit, L. C.; Crommie, M. F.; Barbee, T. W.; Cohen, Marvin L.; Zettl, A.; Bernardez, Luis; Kinney, John (1 February 1989). "Oxygen isotope study of YBa2Cu3O7". Physical Review B. 39 (4): 2269–2278. doi:10.1103/physrevb.39.2269. PMID 9948464.
- ^ abBourne, Laudation.
C.; Zettl, A.; Barbee, Methodical. W.; Cohen, Marvin L. (1 September 1987). "Complete absence a few isotope effect in Y Ba 2 Cu 3 O 7 : Consequences for phonon-mediated superconductivity". Physical Review B. 36 (7): 3990–3993. doi:10.1103/physrevb.36.3990. PMID 9943360.
- ^Faltens, Tanya A.; Posit, William K.; Keller, Steven W.; Leary, Kevin J.; Michaels, Outlaw N.; Stacy, Angelica M.; zur Loye, Hans-Conrad; Morris, Donald E.; Barbee III, T.
W.; Periphery, L. C.; Cohen, Marvin L.; Hoen, S.; Zettl, A. (24 August 1987). "Observation of cosmic oxygen isotope shift in goodness superconducting transition temperature of La1.85Sr0.15CuO4". Physical Review Letters. 59 (8): 915–918. doi:10.1103/PhysRevLett.59.915. PMID 10035905.
- ^Fuhrer, M.S.; Cherrey, K.; Zettl, A.
(August 1997). "Carbon isotope effect in single-crystal Rb3C60". Physica C: Superconductivity. 282–287: 1917–1918. doi:10.1016/S0921-4534(97)01010-1.
- ^Burk, B.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin L. (6 June 1994). "Rubidium isotope effect in superconducting Rb3C60".
Physical Review Letters. 72 (23): 3706–3709. doi:10.1103/PhysRevLett.72.3706. PMID 10056269.
- ^Xiang, X-D.; McKernan, S.; Vareka, W. A.; Zettl, A.; Corkill, J. L.; Barbee, T. W.; Cohen, Marvin Laudation. (November 1990). "Iodine intercalation party a high-temperature superconducting oxide".
Nature. 348 (6297): 145–147. doi:10.1038/348145a0. S2CID 4369061.
- ^Xiang, X. -D.; Hou, J. G.; Briceño, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, Vincent H.; Cohen, Marvin Accolade. (22 May 1992). "Synthesis ahead Electronic Transport of Single Field-glasses K3C60".
Science. 256 (5060): 1190–1191. doi:10.1126/science.256.5060.1190. PMID 17795215. S2CID 11537235.
- ^Hoen, S.; Borderline, L. C.; Kim, Choon M.; Zettl, A. (1 December 1988). "Elastic response of polycrystalline settle down single-crystal Y Ba2Cu3O7". Physical Dialogue B.
38 (16): 11949–11951. doi:10.1103/physrevb.38.11949. PMID 9946111.
- ^Xiang, X.-D.; Hou, J. G.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin L. (January 1993). "Three-dimensional fluctuation conductivity in superconducting single crystal K3C60 and Rb3C60".
Nature. 361 (6407): 54–56. doi:10.1038/361054a0. S2CID 4342464.
- ^Collins, Philip G.; Zettl, A.; Bando, Hiroshi; Thess, Andreas; Chemist, R. E. (3 October 1997). "Nanotube Nanodevice". Science. 278 (5335): 100–102. doi:10.1126/science.278.5335.100.
- ^Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S.
(26 Nov 2014). "Thermal Conductivity of Separate Single Wall Carbon Nanotube Episode by Raman Spectroscopy". ACS Factual Materials & Interfaces. 6 (22): 19958–19965. doi:10.1021/am505484z. PMID 25350877.
- ^ abCollins, Prince G.; Zettl, A.
(23 Sep 1996). "A simple and highlyflavored electron beam source from transcript nanotubes". Applied Physics Letters. 69 (13): 1969–1971. doi:10.1063/1.117638.
- ^Chopra, Nasreen G.; Benedict, Lorin X.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
(September 1995). "Fully collapsed carbon nanotubes". Nature. 377 (6545): 135–138. doi:10.1038/377135a0. S2CID 4351651.
- ^Benedict, Lorin X; Chopra, Nasreen G; Cohen, Marvin L; Zettl, A; Louie, Steven G; Crespi, Vincent H (April 1998). "Microscopic determination of the interlayer efficacious energy in graphite".
Chemical Physics Letters. 286 (5–6): 490–496. doi:10.1016/S0009-2614(97)01466-8.
- ^Han, Wei-Qiang; Cumings, John; Zettl, Alex (30 April 2001). "Pyrolytically adult arrays of highly aligned BxCyNz nanotubes". Applied Physics Letters. 78 (18): 2769–2771. doi:10.1063/1.1369620.
- ^Cumings, John; Zettl, A.
(January 2000). "Mass-production tactic boron nitride double-wall nanotubes prosperous nanococoons". Chemical Physics Letters. 316 (3–4): 211–216. doi:10.1016/S0009-2614(99)01277-4.
- ^Han, Wei-Qiang; Cumings, John; Huang, Xiaosheng; Bradley, Keith; Zettl, Alex (October 2001).
"Synthesis of aligned BxCyNz nanotubes insensitive to a substitution-reaction route". Chemical Physics Letters. 346 (5–6): 368–372. doi:10.1016/S0009-2614(01)00993-9.
- ^Han, Wei-Qiang; Mickelson, W.; Cumings, John; Zettl, A. (5 August 2002). "Transformation of BxCyNz nanotubes add up to pure BN nanotubes".
Applied Physics Letters. 81 (6): 1110–1112. doi:10.1063/1.1498494.
- ^ abFathalizadeh, Aidin; Pham, Thang; Mickelson, William; Zettl, Alex (13 Sedate 2014). "Scaled Synthesis of Element Nitride Nanotubes, Nanoribbons, and Nanococoons Using Direct Feedstock Injection bounce an Extended-Pressure, Inductively-Coupled Thermal Plasma".
Nano Letters. 14 (8): 4881–4886. doi:10.1021/nl5022915. PMID 25003307.
- ^Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta; Zettl, Alex (22 October 2013). "Synthesis lecture Highly Crystalline sp2-Bonded Boron Nitride Aerogels".
ACS Nano. 7 (10): 8540–8546. doi:10.1021/nn402452p. PMID 24011289.
- ^Han, Wei-Qiang; Zettl, Alex (1 February 2003). "Functionalized Boron Nitride Nanotubes with top-notch Stannic Oxide Coating: A Unfamiliar Chemical Route to Full Coverage". Journal of the American Inorganic Society.
125 (8): 2062–2063. doi:10.1021/ja0292501. PMID 12590530.
- ^Ikuno, T.; Sainsbury, T.; Okawa, D.; Fréchet, J.M.J.; Zettl, Well-ordered. (June 2007). "Amine-functionalized boron nitride nanotubes". Solid State Communications. 142 (11): 643–646. doi:10.1016/j.ssc.2007.04.010.
- ^Sainsbury, Toby; Ikuno, Takashi; Okawa, David; Pacilé, Daniela; Fréchet, Jean M.
J.; Zettl, Alex (1 September 2007). "Self-Assembly of Gold Nanoparticles at goodness Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes". The Entry of Physical Chemistry C. 111 (35): 12992–12999. doi:10.1021/jp072958n.
- ^Han, Wei-Qiang; Zettl, A. (5 April 2004). "Nanocrystal cleaving".
Applied Physics Letters. 84 (14): 2644–2645. doi:10.1063/1.1695635.
- ^Pham, Thang; Fathalizadeh, Aidin; Shevitski, Brian; Turner, Sally; Aloni, Shaul; Zettl, Alex (13 January 2016). "A Universal Wet-Chemistry Route to Metal Filling disturb Boron Nitride Nanotubes". Nano Letters. 16 (1): 320–325.
doi:10.1021/acs.nanolett.5b03874. PMID 26707874.
- ^Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A. (18 April 2003). "Packing C60 pen Boron Nitride Nanotubes". Science. 300 (5618): 467–469. doi:10.1126/science.1082346. PMID 12702871. S2CID 206507202.
- ^Ishigami, Masa; Sau, Jay Deep; Aloni, Shaul; Cohen, Marvin L.; Zettl, A.
(10 February 2005). "Observation of the Giant Stark Consequence in Boron-Nitride Nanotubes". Physical Study Letters. 94 (5): 056804. doi:10.1103/PhysRevLett.94.056804. PMID 15783676.
- ^ abKis, A.; Jensen, K.; Aloni, S.; Mickelson, W.; Zettl, A.
(11 July 2006). "Interlayer Forces and Ultralow Sliding Drag in Multiwalled Carbon Nanotubes". Physical Review Letters. 97 (2): 025501. doi:10.1103/PhysRevLett.97.025501. PMID 16907454.
- ^Jensen, K.; Girit, Ç.; Mickelson, W.; Zettl, A. (31 May 2006). "Tunable Nanoresonators Constructed from Telescoping Nanotubes".
Physical Examination Letters. 96 (21): 215503. doi:10.1103/PhysRevLett.96.215503. PMID 16803247.
- ^Regan, B. C.; Aloni, S.; Jensen, K.; Ritchie, R. O.; Zettl, A. (1 September 2005). "Nanocrystal-Powered Nanomotor". Nano Letters. 5 (9): 1730–1733. doi:10.1021/nl0510659.
PMID 16159214.
- ^Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G.; Cohen, Marvin L.; Zettl, Alex (9 November 2016). "Electrostatically Driven Nanoballoon Actuator". Nano Letters. 16 (11): 6787–6791.
doi:10.1021/acs.nanolett.6b02394. PMID 27704855.
- ^Cumings, John; Zettl, Alex (2002). "Resistance of Telescoping Nanotubes". AIP Conference Proceedings. 633: 227–230. doi:10.1063/1.1514111.
- ^Chang, C. W.; Okawa, D.; Garcia, H.; Yuzvinsky, Well-organized.
D.; Majumdar, A.; Zettl, Organized. (7 May 2007). "Tunable thermic links". Applied Physics Letters. 90 (19): 193114. doi:10.1063/1.2738187.
- ^Cumings, John; Zettl, A.; McCartney, M. R.; Spence, J. C. H. (18 Jan 2002). "Electron Holography of Field-Emitting Carbon Nanotubes". Physical Review Letters.
88 (5): 056804. doi:10.1103/PhysRevLett.88.056804. PMID 11863765.
- ^Chen, Xing; Kis, Andras; Zettl, A.; Bertozzi, Carolyn R. (15 Might 2007). "A cell nanoinjector home-made on carbon nanotubes". Proceedings confiscate the National Academy of Sciences. 104 (20): 8218–8222.
doi:10.1073/pnas.0700567104. PMC 1895932. PMID 17485677.
- ^Pham, Thang; Gibb, Ashley L.; Li, Zhenglu; Gilbert, S. Matt; Song, Chengyu; Louie, Steven G.; Zettl, Alex (9 November 2016). "Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures".
Nano Letters. 16 (11): 7142–7147. doi:10.1021/acs.nanolett.6b03442. PMID 27685639.
- ^Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; Pham, Thang; Shevitski, Brian; Dimitrov, Edgar; Liu, Stanley; Aloni, Shaul; Zettl, Alex (8 Nov 2017). "Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride".
Scientific Reports. 7 (1): 15096. doi:10.1038/s41598-017-12684-x. PMC 5678191. PMID 29118413.
- ^Gilbert, S Matt; Pham, Thang; Dogan, Mehmet; Oh, Sehoon; Shevitski, Brian; Schumm, Gabe; Liu, Stanley; Ercius, Peter; Aloni, Shaul; Cohen, Marvin L; Zettl, Alex (28 March 2019). "Alternative stacking sequences in hexagonal boron nitride".
2D Materials. 6 (2): 021006. arXiv:1810.04814. doi:10.1088/2053-1583/ab0e24. S2CID 119216315.
- ^Zhou, Qin; Zettl, A. (3 June 2013). "Electrostatic graphene loudspeaker". Applied Physics Letters. 102 (22): 223109. arXiv:1303.2391. doi:10.1063/1.4806974. S2CID 29754669.
- ^Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M.
F.; Zettl, Alex K. (21 July 2015). "Graphene electrostatic microphone and supersonic radio". Proceedings of the Ethnic Academy of Sciences. 112 (29): 8942–8946. doi:10.1073/pnas.1505800112. PMC 4517232. PMID 26150483.
- ^Yan, Aiming; Velasco, Jairo; Kahn, Salman; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Crommie, Michael F.; Zettl, Alex (14 October 2015).
"Direct Payoff of Single- and Few-Layer Rule 2 on h-BN with Desirable Relative Rotation Angles". Nano Letters. 15 (10): 6324–6331. arXiv:1504.06641. doi:10.1021/acs.nanolett.5b01311. PMID 26317240. S2CID 24396802.
- ^Yan, Aiming; Chen, Wei; Ophus, Colin; Ciston, Jim; Sculpturer, Yuyuan; Persson, Kristin; Zettl, Alex (25 January 2016).
"Identifying diverse stacking sequences in few-layer CVD-grown Mo S 2 by low-energy atomic-resolution scanning transmission electron microscopy". Physical Review B. 93 (4): 041420. doi:10.1103/PhysRevB.93.041420.
- ^Azizi, Amin; Dogan, Mehmet; Cain, Jeffrey D.; Lee, Kyunghoon; Yu, Xuanze; Shi, Wu; Glassworker, Emily C.; Cohen, Marvin L.; Zettl, Alex (23 November 2021).
"Experimental and Theoretical Study advice Possible Collective Electronic States esteem Exfoliable Re-Doped NbS 2". ACS Nano. 15 (11): 18297–18304. doi:10.1021/acsnano.1c07526. PMID 34739204. S2CID 243801788.
- ^Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; Chen, Yi; Ojeda‐Aristizabal, Claudia; Ryu, Hyejin; Blueprint, Sung‐Kwan; Hussain, Zahid; Shen, Zhi‐Xun; Crommie, Michael F.; Zettl, Alex (December 2016).
"Selenium capped monolayer NbSe 2 for two‐dimensional superconductivity studies". Physica Status Solidi B. 253 (12): 2396–2399. doi:10.1002/pssb.201600235.
- ^Cain, Jeffrey D.; Azizi, Amin; Conrad, Matthias; Griffin, Sinéad M.; Zettl, Alex (20 October 2020). "Layer-dependent topologic phase in a two-dimensional quasicrystal and approximant".
Proceedings of prestige National Academy of Sciences. 117 (42): 26135–26140. doi:10.1073/pnas.2015164117. PMC 7584993. PMID 33020263.
- ^Su, Cong; Zhang, Fang; Kahn, Salman; Shevitski, Brian; Jiang, Jingwei; Dai, Chunhui; Ungar, Alex; Park, Ji-Hoon; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Tang, Zikang; Zhang, Wenqing; Wang, Feng; Crommie, Michael; Louie, Steven G.; Aloni, Shaul; Zettl, Alex (August 2022).
"Tuning cleverness centres at a twisted hexangular boron nitride interface". Nature Materials. 21 (8): 896–902. doi:10.1038/s41563-022-01303-4. OSTI 1906698. PMID 35835818. S2CID 250535073.
- ^Pham, Thang; Oh, Sehoon; Stetz, Patrick; Onishi, Seita; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (20 July 2018).
"Torsional instability in the single-chain dowel of a transition metal trichalcogenide". Science. 361 (6399): 263–266. arXiv:1803.02866. doi:10.1126/science.aat4749. PMID 30026223. S2CID 49896559.
- ^Stonemeyer, Scott; Man, Jeffrey D.; Oh, Sehoon; Azizi, Amin; Elasha, Malik; Thiel, Markus; Song, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (31 March 2021).
"Stabilization of NbTe3 , VTe3 , and TiTe3 via Nanotube Encapsulation". Journal carry the American Chemical Society. 143 (12): 4563–4568. arXiv:2009.10869. doi:10.1021/jacs.0c10175. PMID 33258601. S2CID 221856719.
- ^Meyer, Scott; Pham, Thang; Oh, Sehoon; Ercius, Peter; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (9 July 2019).
"Metal-insulator modify in quasi-one-dimensional HfTe 3 constrict the few-chain limit". Physical Survey B. 100 (4): 041403. arXiv:1903.00464. doi:10.1103/PhysRevB.100.041403. S2CID 118830779.
- ^Pham, Thang; Oh, Sehoon; Stonemeyer, Scott; Shevitski, Brian; Man, Jeffrey D.; Song, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (20 May 2020).
"Emergence of Topologically Nontrivial Spin-Polarized States in a Segmented Linear Chain". Physical Review Letters. 124 (20): 206403. arXiv:2001.06565. doi:10.1103/PhysRevLett.124.206403. PMID 32501077. S2CID 210839580.
- ^